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Abstract 

Impact assessments of fishing on a stock require parameterization of vital rates: growth, 

mortality and recruitment. For “data-poor” stocks vital rates may be estimated from empirical 

size-based relationships or from life-history invariants. However a theoretical framework to 

synthesize these empirical relations is lacking. Here we combine life-history invariants, 

metabolic scaling and size-spectrum theory to develop a general size- and trait-based theory 

for demography and recruitment of exploited fish stocks. Important concepts are 

physiological or metabolic scaled mortalities and flux of individuals or their biomass to size. 

The theory is based on classic metabolic relations at the individual level and uses asymptotic 

size 𝑊∞ as a trait. The theory predicts fundamental similarities and differences between small 

and large species in vital rates and response to fishing. The central result is that larger species 

have a higher egg production per recruit than small species. This means that density-

dependence is stronger for large than for small species and has the consequence that fisheries 

reference points that incorporate recruitment do not obey metabolic scaling rules. This result 

implies that even though small species have a higher productivity than large species their 

resilience towards fishing is lower than expected from metabolic scaling rules. Further we 

show that the fishing mortality leading to maximum yield per recruit is an ill-suited reference 

point. The theory can be used to generalise the impact of fishing across species and for 

making demographic and evolutionary impact assessments of fishing, particularly in data-

poor situations. 

Keywords: Beverton-Holt, recruitment, metabolic theory, size spectrum, data-poor. 
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Introduction 

Most quantitative work on fish stocks relies on the theoretical framework developed by 

Beverton and Holt (1959). The Beverton-Holt framework is an age-structured matrix 

formulation of the demography of a stock that is coupled to a von Bertalanffy description of 

growth (Bertalanffy, 1957) to calculate yield from the fishery and the reproductive potential 

of the stock. To apply the framework for a specific exploited stock two issues must be 

confronted: 1) parameters related to growth, mortality, maturation and recruitment of the 

stock have to be specified. Estimating these parameters requires a well-established biological 

monitoring program. 2) The framework relies on costly aging that, even for well-studied 

stocks, is plagued with uncertainties. These two issues make it difficult to apply the 

Beverton-Holt framework for impact assessment of fishing in a data-poor setting since 

neither parameters nor the age of fish in catches are known. 

Soon after the Beverton-Holt framework was formulated it was realized that there were 

regularities in the variation of the parameters across fish species (Beverton and Holt, 

1959; Pauly, 1980; Beverton, 1992). These regularities make it possible to formulate some of 

the parameters in terms of “Beverton-Holt life-history invariants”, which are non-

dimensional parameters that do not vary systematically across species (Charnov and 

Berrigan, 1991; Charnov, 1993). Examples of life-history invariants are: the ratio between 

adult natural mortality and the von Bertalanffy growth constant (𝑀/𝐾), or the ratio between 

size at maturation and asymptotic size. Later, the life-history invariants received a theoretical 

underpinning, either through life-history optimization theory (Charnov et al., 2001) or 

community ecology (Andersen et al., 2009). The life history invariants made it possible to 

formulate the Beverton-Holt theory using only two parameters for a given stock related to 

growth (𝐿∞ or 𝐾) and recruitment (the “𝛼” parameter in a stock-recruitment relation that 

designates density-independent survival)  (Williams and Shertzer, 2003; Beddington and 

Kirkwood, 2005; Brooks et al., 2009). This is an important step forward to reduce the number 

of parameters in a data-poor setting but it still leaves the recruitment parameter 𝛼 unspecified.  

An alternative to rely on life-history invariants is to use empirical relationships of vital rates, 

typically based on size (Le Quesne and Jennings, 2012). Such relationships can be derived 

from cross-species analyses of mortality (McGurk 1986, Gislason et al 2010), growth 

(Kooijman 2000) and even for reproduction (Denney et al 2002, Goodwin et al 2006, Hall et 

al 2006). The existence of robust empirical relationships between the vital rates of fish 

suggests that these relationships may be derived from a general theory but so far such a 

general theory has been lacking. One candidate for a theory is the “metabolic” framework 

(Brown et al. 2004), which predicts that all mass-rates, such as metabolism, scale with weight 

as 𝑤3/4 and specific rates, such as productivity 𝑃/𝐵, scale with 𝑤−1/4. We refer to these two 

predictions as metabolic scaling rules. A potential problem with the metabolic framework is 

that is does not explicitly consider structured populations where the ratio between adult size 

and offspring size is large, as it is the case for fish. 

Since information on size is much easier to obtain than information on age, size-spectrum 

theory has been developed to use body size as the structuring variable instead of age (Beyer, 

1989). Further, body size is more important than age for physiology (Winberg, 1956), 

mortality of individuals (Kerr, 1974), fisheries regulations through gear specifications, and 

usually also market value. Analyses of biomass as a function of size have demonstrated 

community-level patterns in the scaling of biomass with body size, in particular the 

“Sheldon” size spectrum (Sheldon et al, 1972) supported by theoretic arguments (Sheldon et 

al, 1977; Andersen and Beyer, 2006), as well as how the spectrum responds to fishing (Daan 
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et al, 2005). It is possible to apply size-based principles to the size-structure of a single 

population (Andersen and Beyer, 2006). Here we are concerned with how the size-structure 

of a single population responds to fishing. 

The objective of this paper is to formulate a general size-based theoretical framework to 

calculate demography and recruitment of fished stocks. The framework unites the Beverton-

Holt theory with life-history invariants, metabolic scaling rules and size-spectrum concepts. 

The theory is developed from five assumptions related to the metabolism, life-history and 

density-dependence. The end result is a theory that requires one parameter only to 

characterize a stock: the asymptotic size  𝑊∞. 

To provide a practical example of the application of the theory for a non-growing population 

we calculate four relevant fisheries reference points as functions of asymptotic size:  the 

fishing mortalities that maximize yield per recruit 𝐹msyr or yield 𝐹msy, and the fishing 

mortalities at which recruitment is impaired 𝐹lim or the stock crashes 𝐹crash. Reference points 

are usually calculated on a species by species basis but we show that there are regularities in 

how the reference points vary with asymptotic size. We discuss the generality of the theory in 

light of the assumptions and give examples of how the theory can be applied for ecological 

and evolutionary impact assessments of fishing for data-poor as well as for data-rich stocks. 

Methods 

The theory is based on size of individuals. We use weight 𝑤 as a measure of size since it is 

the natural currency to formulate a mass balance. Table 1 provides a glossary of symbols 

used with a specification of their relation to the symbols used in classic age-based theory. 

The theory rests on five fundamental assumptions on density-dependence and the scaling of 

consumption, mortality, and reproductive effort with individual size. The assumptions are 

used to develop an energy budget for an individual fish that leads to formulas for growth and 

egg production. The individual energy budget is combined with mortality to scale up to 

population level quantities: stock structure, spawning stock biomass and density-dependent 

recruitment. Finally fisheries reference points are calculated as functions of asymptotic size. 

Assumption #1: available energy and metabolic scaling 

The available energy is the energy remaining after assimilation costs and standard 

metabolism have been deducted from consumed food. The concept of “available energy” 

corresponds to the “anabolic” term in a classic von Bertalanffy energy budget. Available 

energy for an individual of weight 𝑤 is assumed to follow a power-law (Fig. 1a):  

 𝐶(𝑤) = 𝐴𝑤𝑛 (1) 

where 𝐴 and 𝑛 are species-independent constants. The justification for this assumption is that 

energy (food) has to be absorbed through a surface in the body. The area of a surface scales 

with weight as 𝑤2/3 (Bertalanffy, 1957; Kooijman, 2000). The modern ”metabolic” 

interpretation recognizes that the surface may be fractal so the exponent may be higher, 

e.g. 𝑛 = 3/4 (West et al., 1997). Our formulation of the theory only requires that 0 < 𝑛 < 1. 

For metabolic scaling 𝑛 = 3/4 is used in the practical examples as it conforms with data (see 

later). 

Assumption #2: natural mortality 

Natural mortality 𝜇𝑝(𝑤) is assumed to be a power-law function with exponent 𝑛 − 1 (Fig. 

1b):  
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 𝜇𝑝(𝑤) = 𝑎𝐴𝑤𝑛−1 (2) 

where the physiological level of predation 𝑎 is a non-dimensional constant expressing the 

level of mortality (Beyer, 1989). Since 𝑛 = 3/4, mortality is a decreasing function of size 

with exponent -1/4.  Thus a 1 g fish is exposed to mortality 10 times higher than a 10 kg fish. 

The assumption further states that growth and mortality are connected through the constant 𝐴: 

a higher consumption leads to a higher risk of predation mortality. The physiological level of 

predation 𝑎 is a central parameter and can be understood in two ways: First the formal 

definition is the ratio between mortality and weight-specific available energy (Beyer, 1989). 

Second 𝑎 is approximately proportional to the 𝑀/𝐾 life-history invariant (the ratio between 

adult mortality and von Bertalanffy growth rate; Beverton and Holt, 1959; see Table 1). 

However, 𝑎 is defined with a mortality declining with size whereas 𝑀/𝐾 is defined from a 

constant mortality. The value of 𝑎 can be determined from empirical 𝑀/𝐾 relations to be ≈
0.35 (Table 1). Alternatively, (2) can be derived from assumption 1 from mass conservation 

in the fish community (Peterson and Wroblewski, 1984; Beyer, 1989), which leads to a 

prediction of the value of 𝑎 in terms of parameters related to predator-prey interactions 

(Andersen et al., 2009). Here the assumption is treated as separate from (1) since 𝑎 for a 

specific species might deviate from the community average value. 

Assumption #3: reproduction 

The effort invested in reproduction by mature individuals is proportional to individual 

weight. This corresponds to assuming that the gonado-somatic index of adults is independent 

of age and size. 

Assumption #4: maturation 

Size at maturation 𝑤𝑚 is assumed proportional to asymptotic weight: 𝑤𝑚 = 𝜂𝑚𝑊∞. The 

constant of proportionality 𝜂𝑚 is one of the Beverton-Holt life-history invariants (Charnov, 

1993), which has been demonstrated from cross-species analyses to be between 0.06 and 0.68 

with an average value of 𝜂𝑚 ≈ 0.25 (Beverton, 1992). 

Assumption #5: density dependence 

Recruitment is limited by density-dependent processes described by a stock-recruitment 

relationship (Ricker, 1954; Beverton and Holt, 1959). Such a description of density-

dependent regulation is often used to represent density-dependent processes happening early 

in life (Myers and Cadigan, 1993) but it may just as well represent processes happening at 

any size or age before fishing and maturation occur or density dependent regulation of 

reproduction. 

Energy budget of an individual 

The energy budget of an individual fish determines how growth and egg production varies as 

a function of size and across species. Such an energy budget can be formulated on the basis 

of assumption 1, 3 and 4. The available energy 𝐴𝑤𝑛 (assumption 1) is used for activity and 

the remainder is divided between reproduction (for mature individuals) and somatic growth. 

Cost of activity has been shown to be approximately proportional to weight when an 

individual swims at an optimal speed (Ware, 1978). Investment in reproduction for mature 

individuals is proportional to weight (assumption 3). The remaining energy is used for 

somatic growth. 

We use a smooth function to describe the transition between juveniles and adults to represent 

that individuals mature at different weights. This “maturity ogive” is described by a 
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sigmoidal function varying smoothly from 0 to 1 around the size at maturation 𝜂𝑚𝑊∞ 

(Hartvig et al. 2011; Fig. 1a): 

𝜓𝑚(𝑤/𝑊∞) = [1 + (
𝑤

𝜂𝑚𝑊∞
)

−𝑢𝑚

]
−1

 (3) 

where 𝑢𝑚 specifies the width of the zone where the transition from 0 to 1 occurs. The 

specific choice of the function is not important for the results as long as the width of the 

transition zone is proportional to 𝑊∞. The growth rate (weight per time) can now be written 

as (Fig. 1a): 

 𝑔(𝑤) =  𝐴𝑤𝑛 − 𝑘𝑎𝑤 − 𝜓𝑚(𝑤/𝑊∞)𝑘𝑟𝑤,  (4) 

where and 𝑘𝑎 and 𝑘𝑟 are weight-specific costs of activity and investment into reproduction 

(time-1). The role of 𝜓𝑚(𝑤/𝑊∞) is to ensure that investment in reproduction is only taken 

into account for mature individuals. This aspect may be ignored by setting 𝜓𝑚 = 1 without 

seriously compromising accuracy, as (𝑘𝑎 + 𝑘𝑟)𝑤 ≪ 𝐴𝑤𝑛 when 𝑤 ≪ 𝑊∞. Doing so will 

make the growth function equivalent to the classic von Bertalanffy growth function. We 

introduce reproduction explicitly to allow application of the theory as a basis for life-history 

optimization calculations (Day and Taylor, 1997) and quantitative genetics calculations of 

fisheries induced evolution (Andersen and Brander, 2009). For larvae, 𝜓𝑚 = 0 and 𝑤/𝑊∞ ≈
0.  This means that their growth rate is approximately 𝐴𝑤𝑛, which fits larval growth rates 

well (Beyer, 1989, p. 138).  

To formulate (4) in terms of life-history invariants we express the species-specific parameters 

𝑘𝑎 and 𝑘𝑟 in terms of two other parameters: the asymptotic size 𝑊∞ and the fraction of the 

energy invested into activity and reproduction used for activity 𝜖𝑎. At the size 𝑤 = 𝑊∞ all 

available energy is used for activity and reproduction. We can determine this size from 

𝐴𝑊∞
𝑛 = 𝑘𝑎𝑊∞ + 𝑘𝑟𝑊∞: 

 𝑊∞ = (
𝐴

𝑘𝑎 + 𝑘𝑟
)

1
1−𝑛

. (5a) 

We further define 𝜖𝑎 as: 

 𝜖𝑎 =
𝑘𝑎

𝑘𝑎 + 𝑘𝑟
. (5b) 

𝜖𝑎 is a non-dimensional number representing the fraction of the energy invested into activity. 

That 𝜖𝑎 is constant (independent of 𝑊∞) follows from assumption 4 (Charnov et al. 2001). 𝑘𝑎 

and 𝑘𝑟 can now be expressed in terms of 𝑊∞ and 𝜖𝑎 by re-arranging (5): 

𝑘𝑎 = 𝐴𝜖𝑎𝑊∞
𝑛−1 

𝑘𝑟 = 𝐴(1 − 𝜖𝑎)𝑊∞
𝑛−1.  

Inserting these expressions back into (4) leads to: 

 𝑔(𝑤) = 𝐴𝑤𝑛 [1 − (
𝑤

𝑊∞
)

1−𝑛

(𝜖𝑎 + (1 − 𝜖𝑎)𝜓𝑚 (
𝑤

𝑊∞
))] (6) 

This expression for 𝑔(𝑤) has two advantages compared to eq. (4). First it is formulated in 

terms of the trait 𝑊∞ and the species-independent parameters 𝜖𝑎, 𝐴 and 𝑛. Second, it shows 

directly the three phases of growth. The factor outside the square brackets expresses growth 

at early life since 𝑤 ≪ 𝑊∞ ensures the square brackets is ≈ 1. In juvenile life 𝜓𝑚(𝑤/𝑊∞) ≈
0  still governs but the costs of activity represented by 𝜖𝑎(𝑤/𝑊∞)1−𝑛 cannot be ignored. 
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The term in the square bracket has decreased to 0.75 when the fish has reached 1/100 of  𝑊∞ 

with 𝜖𝑎 ≈ 0.8 (Table 1). In adult life 𝜓𝑚(𝑤/𝑊∞) ≈ 1 and (6) is identical to the von 

Bertalanffy growth equation. When 𝑤 approaches 𝑊∞ the term in the square brackets → 0 

and growth ceases. 

Scaling from individuals to a population 

The size distribution of individuals within a non-growing stock 𝑁(𝑤), often referred to as the 

size spectrum, is a “density function” with dimension numbers per weight, such that 𝑁(𝑤)d𝑤 

is the number of individuals in the size range [𝑤: 𝑤 + d𝑤]. Population-level measures 

referring to any size range are obtained by integrating over 𝑁(𝑤) since we are dealing with 

continuous size, e.g. the total number of individuals is ∫ 𝑁(𝑤)d𝑤 and the total biomass is 

∫ 𝑁(𝑤)𝑤 d𝑤. 

Recruitment is represented by a continuous and constant flux 𝑅 of individuals entering the 

population at size 𝑤𝑟. Such a flux, with dimension numbers per time, must equal the number 

density multiplied by the growth rate, i.e. 𝑅 = 𝑁(𝑤𝑟)𝑔(𝑤𝑟). Here 𝑅 is obtained from a stock-

recruitment relationship (see later) and the flux 𝑁(𝑤)𝑔(𝑤) at any larger size 𝑤 simply equals 

𝑅 reduced by the survivorship, i.e. 

 𝑁(𝑤) =
𝑅

𝑔(𝑤)
exp (− ∫

𝜇(�̃�)

𝑔(�̃�)

𝑤

𝑤𝑟

d�̃�) (7) 

where the exponential term expresses the probability of being alive at size 𝑤. With fluxes 

replaced by numbers this formula is identical to how numbers-at-size are calculated in 

traditional size-based theory (Beyer, 1989). The inverse of the growth rate measures the time 

required to grow through a tiny size range so the integral in (7) expresses the cumulative 

mortality growing from 𝑤𝑟 to 𝑤 when exposed to a total mortality of 𝜇(𝑤) (see Appendix B 

for a full derivation that also covers the time-dependent case).  

Considering larval fish where 𝑔(𝑤) ≈ 𝐴𝑤𝑛, eq. (7) gives the important result that the size-

spectrum is a power-law ∝ 𝑤−𝑛−𝑎 (Appendix B; Fig. 1c):  

 
𝑁(𝑤) =

𝑅

𝐴𝑤𝑟
−𝑎 𝑤−𝑛−𝑎   for 𝑤 ≪ 𝑊∞ 

(8) 

This is because mortality divided by growth in (7) in this case becomes 𝑎/𝑤 giving rise to a 

survivorship of:  

 
𝑃𝑤𝑟→𝑤 = (

𝑤

𝑤𝑟
)

−𝑎

   for 𝑤 ≪ 𝑊∞ 

 

(9) 

where the survival factor 𝑤−𝑎 combined with the inverse growth factor   𝑤−𝑛 creates the size 

spectrum in (8).  

Recruitment 

The flux of recruits (numbers per time) is described by a Beverton-Holt stock recruitment 

relationship: 
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𝑅 =  𝑅𝑚𝑎𝑥

𝑃𝑟𝑅𝑝

𝑅𝑚𝑎𝑥 + 𝑃𝑟𝑅𝑝 
= 𝑅𝑚𝑎𝑥

𝛼𝑃𝑟𝐵

𝑅𝑚𝑎𝑥 + 𝛼𝑃𝑟𝐵 
,  

(10) 

where 𝑅𝑚𝑎𝑥 is the maximum flux of recruits at size 𝑤𝑟 at high stock biomass, 𝑅𝑝 is the total 

flux of viable eggs of size 𝑤𝑒𝑔𝑔 and 𝑃𝑟 = 𝑃𝑤𝑒𝑔𝑔→𝑤𝑟
 is the density−independent survivorship 

from egg size to size at recruitment represented by the initial slope of the recruitment curve. 

The second expression is obtained using the spawning stock biomass 𝐵 = ∫ 𝜓𝑚(𝑤/
𝑊∞)𝑁(𝑤)𝑤 d𝑤 and 𝛼, the egg production rate per biomass (numbers⋅ biomass-1time-1 ), to 

express 𝑅𝑝 = 𝛼𝐵. 𝛼 is proportional to the weight-specific investment in reproduction 𝑘𝑟 

divided by the size of an egg: 

 

𝛼 = 𝜖𝑟𝑘𝑟/𝑤egg = 𝐴𝜖𝑟(1 − 𝜖𝑎)𝑊∞
𝑛−1/𝑤egg 

(11) 

where 𝜖𝑟 is the efficiency of reproduction, i.e. 1-𝜖𝑟  represents costs of reproduction and egg 

mortality. The important result is the prediction that 𝛼 is a decreasing function of asymptotic 

size with scaling 𝑊∞
𝑛−1 (Fig. 2a). 

The recruitment can be related to the classic “steepness” parameters (Appendix D). 

Simulations using Ricker recruitment did not yield systematically different results for the 

reference points hence the Beverton-Holt curve was used in the examples given later.  

Yield 

Yield is calculated by integrating over the size distribution multiplied by a size-selectivity 

curve of the fishing operation. In the examples presented later fishing mortality is specified 

via a trawl selectivity curve 𝜇𝐹 = 𝐹𝜓𝐹(𝑤/𝑊∞) where 𝜓𝐹(𝑤/𝑊∞) is given as in (3) with 

subscript 𝑚 replaced by subscript 𝐹:  

 𝑌 = 𝐹 ∫ 𝜓𝐹

𝑊∞

𝑤𝑟

(𝑤/𝑊∞)𝑁(𝑤)𝑤 d𝑤 (12) 

Yield per recruit is defined as yield divided by the biomass flux of recruits, 𝑅𝑤𝑟. It is 

therefore a dimensionless quantity and not, as it is sometimes defined, a biomass. Yield per 

recruit 𝑌/(𝑅𝑤𝑟) is calculated from (12) by inserting 𝑁(𝑤) from (7) and dividing through by 

𝑅𝑤𝑟. Since 𝑅 then does not figure on the right-hand-side, yield per recruit is independent of 

actual recruitment 𝑅 and is therefore determined solely by the stock structure (7).  

In the calculations presented later the yield is instead divided by the biomass flux of recruits 

to the fishery, i.e. 𝑅𝑤𝑟 is replaced by 𝑅𝐹𝑤𝐹 where 𝑅𝐹 = 𝑁(𝑤𝐹)𝑔(𝑤𝐹) is the flux of 

individuals to the size  𝑤𝐹 = 𝜂𝐹𝑊∞ of 50 % gear selection in the absence of fishing. This 

calculation of yield per recruit equals the former multiplied by 𝑤𝑟/𝑤𝐹 and divided by the 

survivorship due to natural mortality to size 𝑤𝐹.  Thus the two expressions differ only by a 

constant but the latter has the advantage that 𝑌𝑟 = 𝑌/(𝑅𝐹𝑤𝐹) > 1 gives a direct indication of 

the relation between recruitment to the fishery and the yield per recruit.   

Fishing mortality can be written as a non-dimensional parameter by scaling it similarly to the 

way the physiological mortality 𝑎 is defined: 

 
𝑎𝐹 = 𝐹𝑊∞

1−𝑛/𝐴. 

 
(13) 
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This “physiological fishing mortality” introduces a metabolic scaling of fishing mortality by 

measuring fishing mortality in terms of specific available energy. The physiological scaling 

of fishing mortality is used to test which aspects of the population dynamics that follow 

metabolic scaling rules: if fish stock dynamics follow metabolic scaling rules, fish 

populations should tolerate the same physiological fishing mortality regardless of their 

asymptotic size. 

Reference points 

Fisheries reference points are calculated as the fishing mortality (in absolute or physiological 

units) that maximizes yield or yield per recruit (𝐹msy or 𝐹msyr) or which leads to decreased 

recruitment (𝐹lim) or population collapse (𝐹crash). Specifically, 𝐹lim is the fishing mortality 

where the recruitment is half the maximum recruitment 𝑅 = 0.5𝑅max, which is the same as 

the fishing mortality where 𝛼𝑃𝑟𝐵 = 𝑅max. The four reference points characterize the 

response of the population to fishing in terms of yield and population state, with and without 

taking recruitment into account. 

To compare the predicted values of the reference point with observations, we have collected 

values of two reference points, 𝐹msy and 𝐹lim from ICES’s advice from 5 ecosystems (Table 

2). Only a small fraction of the assessed stocks had calculations of both reference points, in 

particular there were only two data points for small species (𝑊∞ < 500 g). The estimation of 

the reference points were not performed by any standardized procedure. We have converted 

the fishing mortalities to physiological units using von Bertalanffy growth constants: 

𝑎𝐹.msy = 𝐹msy/(3𝐾) and likewise for 𝑎F.lim.  

Parameter values 

Parameter values are determined from cross-species analyses from the literature (Table 1). 

The growth rate parameter 𝐴 was determined from a fit between growth curves specified by 

(6) and observed von Bertalanffy size-at-age specified by 𝐾 and asymptotic length 𝐿∞. 

Length was converted to weight by the relationship 𝑊∞ = 𝑞𝐿∞
3  where 𝑞 = 0.01 g cm−3, and 

𝐾 was corrected for temperature by a Q10 of 1.83 (Q10 is the fractional change when the 

temperature is increased by 10∘C). For details of the fitting procedure see Appendix A.  

The dimensional parameter that scales biomass is the maximum recruitment 𝑅𝑚𝑎𝑥 (numbers 

per time). 𝑅𝑚𝑎𝑥 is stock-specific and depends on the carrying capacity of the stock in 

question. 𝑅𝑚𝑎𝑥 is not covered by the theory but since reference points are only formulated 

with respect to relative yield and recruitment, i.e. yield and recruitment divided by 𝑅𝑚𝑎𝑥, this 

parameter is not required to calculate reference points.  

It does not matter how we select the size of recruitment 𝑤𝑟 as long as it is before fishing. For 

simplicity we choose 𝑤𝑟 = 𝑤egg implying 𝑃𝑟 = 1. 

Implementation 

The calculation of the size distribution, yield and recruitment can be reduced to a few 

equations that can be implemented in a spreadsheet (Appendix C) or as a web-application 

(Appendix E). 

Results 

The important dimensional parameter, i.e. a parameter having units, is the growth constant 𝐴, 
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which has dimensions weight1−𝑛 per time (Table 1). 𝐴 plays the role of a time scale in the 

theory as it enters all expressions that have dimensions of time: yield (biomass per time), 

recruitment (numbers per time), and fishing mortalities (time−1). Fitting 𝐴 to observed von 

Bertalanffy weight-at-age curves (Fig. 2b) demonstrates that 𝐴 does not vary systematically 

as a function of asymptotic size despite a large variation in growth between species with 

similar asymptotic size. 

The size distribution of the stock is determined by performing the integral (7) either 

analytically (Appendix B) or numerically (Appendix C). To visualize the size spectrum we 

follow the idea of Sheldon et al. (1972) and plot the total biomass in logarithmic size bins, 

e.g. from 1-10 g, from 10-100 g etc. This is achieved by multiplying the number density 

spectrum by 𝑤2  to form 𝑤2𝑁(𝑤) (see Andersen and Beyer 2006, Appendix A) (Fig. 1c+d). 

Since the size spectrum of juveniles scales as 𝑤−𝑛−𝑎 (8) the total biomass in a logarithmic 

bin scales as 𝑤2−𝑛−𝑎 ≈ 𝑤0.90; an increasing function of size. The increase in biomass with 

size is because the gain in biomass from consumption (the exponent 2 − 𝑛) exceeds the loss 

to predation (exponent −𝑎). The bins may be set up such that the last bin contains the 

spawning stock biomass per recruit, which then scales as 𝐵/𝑅 ∝ 𝑊∞
2−𝑛−𝑎. Hence, in the 

absence of fishing, larger species (large 𝑊∞) have a higher spawning stock biomass per 

recruit than smaller species. When the stock is subject to fishing the biomass of larger species 

is being diminished more by a given 𝐹 than smaller species (Fig. 1c). This is because fishing 

mortality acts over a longer time-span for large species than for small species (the time to 

grow through a logarithmic size bin is proportional to 𝑤/𝑔(𝑤) ∝  𝑤1−𝑛 so the time fishing 

acts is ≈ 𝑊∞
1−𝑛). Therefore large species experience a larger cumulative fishing mortality 

than small species.  If the fishing mortality is measured as the physiological fishing mortality 

𝑎𝐹 then the relative impact of fishing on the stock structure is independent of 𝑊∞ (Fig. 1d and 

analytical calculations in Appendix B).  

Yield per recruit to the fishery, 𝑌/(𝑅𝐹𝑤𝐹), is calculated directly from the stock structure 

using (7) and (12). It has a maximum at 𝐹 = 𝐹msyr and 𝐹msyr decreases as a function of 

asymptotic size (Fig. 3a). To test whether metabolic scaling rules hold for yield per recruit, it 

is plotted as a function of the physiological fishing mortality (Fig. 3b). In this case all the 

curves lie on top of one another, i.e. there is one universal yield per recruit curve for a given 

set of life-history parameters, independent of 𝑊∞. The yield per recruit reference point 

therefore obeys metabolic scaling rules.  

The yield per recruit curve is fairly flat around the maximum for the standard set of 

parameters. For stocks with a relatively small natural mortality the maximum becomes better 

defined but also occurs at a smaller fishing pressure. For a high natural mortality the 

maximum occurs at higher fishing pressures, and may even lie beyond the point where the 

stock crashes.  

Egg production of the stock is determined by multiplying the spawning stock biomass per 

recruit 𝐵/𝑅 ∝ 𝑊∞
2−𝑛−𝑎 (increasing with 𝑊∞) with the investment in reproduction 𝑘𝑟 ∝

𝑊∞
𝑛−1 (decreasing with 𝑊∞), yielding 𝑅𝑝/𝑅 ∝ 𝑊∞

1−𝑎 ≈ 𝑊∞
0.65; an increasing function of 𝑊∞. 

The increasing spawning stock biomass per recruit is therefore more important for egg 

production than the decreasing investment into reproduction. As a result larger species have a 

higher egg production per recruit than smaller species and consequently lie higher on the 

stock-recruitment curve and experience stronger density dependence (Fig. 4). This result only 

depends on the value of 𝑎 which is expected to be less than 1 since if it was larger than 1 it 

would not be an optimal life-history strategy for fish to produce many small eggs (Andersen 

et al 2008). Further, if 𝑎 = 1 then all species would have the same 𝑅𝑝/𝑅, however, as will be 
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evident later, that level of mortality would crash the population. The result is therefore 

insensitive to the values of the other parameters and is essentially determined by assumptions 

(1) and (2). Small species lie low on the stock-recruitment curve and do not experience strong 

density dependence. As seen earlier (Fig. 1c), larger species are harder hit by a given fishing 

mortality so the impact of fishing on recruitment is therefore stronger for large species than 

for medium sized species (Fig. 5a). For very small species the egg production is on the rising 

part of the recruitment curve even in the absence of fishing, so fishing also has a strong 

impact on these species. If 𝐹 is scaled to physiological units 𝑎𝐹 the impact of fishing still 

depends on the asymptotic size (Fig. 5b). Thus recruitment does not obey metabolic scaling 

rules. 

Yield from the fishery is determined by a combination of the size structure of the stock and 

recruitment (Fig. 6). Yield is roughly a parabolic function of fishing mortality as predicted by 

classic surplus production theory. For the largest species the yield curve coincides with the 

yield per recruit curve until the fishing mortality leading to maximum yield (Fig. 6; thick 

line). For higher fishing mortalities yield becomes recruitment limited and the yield is smaller 

than the yield per recruit. For the smallest species the yield per recruit curve is different from 

the yield per recruit curve at all fishing mortalities as these species are recruitment limited 

even in the absence of fishing (Fig. 6; thin line).  

Fisheries reference points are determined either by stock structure (yield per recruit; 𝐹msyr) 

by recruitment (𝐹lim and 𝐹crash), or by yield (𝐹msy). Plots of reference points as a function of 

fishing effort synthesize the previously presented results (Fig. 7): the impact of a given 𝐹 on 

the stock structure is larger on big species than on small species (Fig. 1c). On the other hand 

very small species are expected to be recruitment limited even in the absence of fishing (Fig. 

4) and consequently only tolerate approximately the same 𝐹 as large species (Fig. 6a). In 

general 𝐹crash ≫ 𝐹msy, i.e. stocks are expected to tolerate fishing mortalities much higher 

than 𝐹msy albeit with a penalty in yield. Determining reference points using the physiological 

fishing mortality makes them monotonous functions of 𝑊∞, roughly proportional to ln( 𝑊∞), 

except 𝐹msyr which is independent of 𝑊∞ (Fig. 7b). This is because only 𝐹msyr obeys 

metabolic scaling rules. The most conspicuous result is the lack of metabolic scaling for the 

reference points that depend on recruitment and yield. The absence of a metabolic scaling is 

also present in the reference points currently used for selected ICES stocks which appear to 

be almost independent of asymptotic size (Fig. 8).  

The values of the life-history parameters that are used in the calculation of the reference 

points vary quite significantly around the default values in Table 1 see e.g. Fig 2b. To 

account for this variation we have selected sets of parameters at random from distributions 

that represent the range of variation of the parameters and for each set calculated the 

reference points (Fig. 8).  The analysis demonstrates that the reference points vary roughly a 

factor of two around the value found using the default parameters. This variation is 

surprisingly small considering the quite large variation in the parameters and the sensitivity 

of survivorships to variations in natural mortality a (eq. 9). 

The most important parameter determining the value of the reference points is the natural 

mortality, 𝑎 (Fig. 9). There is an obvious negative relation between natural mortality and the 

maximum fishing mortality 𝐹crash that a stock can tolerate. What is less obvious is that the 

fishing mortality leading to the maximum yield 𝐹msy is an increasing function of 𝑎 as long as 

𝑎 is small (significantly smaller than the default value of 𝑎 = 0.35). The fishing mortality 

that leads to maximum yield per recruit 𝐹msyr is a good predictor of 𝐹msy for small values of 

𝑎 because the stock is not recruitment limited, i.e. 𝑅 ≈ 𝑅max. For higher natural mortalities 
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fishing at 𝐹msy leads to a reduction in recruitment such that 𝐹msyr is no longer a good 

predictor of 𝐹msy. 𝐹msyr is a particularly ill-suited reference point for stocks with a high 

natural mortality, as it may well be larger than both 𝐹lim and 𝐹crash.  

Discussion  

We have made a physiological reformulation of the classic Beverton-Holt single-species 

theory for assessing the impact of fishing on a fish stock. The theory builds on the Beverton-

Holt theoretical framework but draws on modern elements from life-history theory, size-

spectrum theory and metabolic theory. The basal assumptions are similar to the Beverton-

Holt framework with two adjustments: natural mortality is size-dependent (Beyer, 1989) and 

the growth function is bi-phasic with an explicit representation of effort spent on 

reproduction (Lester et al., 2004).  

The physiological formulation is similar to the “metabolic” formulation of population 

dynamics (Brown et al., 2004) due to the reliance on a central assumption of consumption 

scaling as a power-law with size. In contrast to the metabolic theory the size-based 

framework explicitly considers a structured population. Because of the “metabolic” scaling 

assumption (1) many relationships can be described as power laws with scaling exponents 𝑛 

or 𝑛 − 1, e.g. P/B (Andersen et al. 2009) and yield-per-recruit. However, the added 

complexity introduced by the structured population leads to two counter-intuitive predictions 

that will be discussed below: 1) egg production per recruit in an unfished population is an 

increasing function of 𝑊∞ and 2) reference points do not obey metabolic scaling rules. 

Density dependence 

Egg production per recruit scales as 𝑊∞
1−𝑎 ≈ 𝑊∞

0.65. As it increases with asymptotic size 

there is a systematic variation in the degree of density dependence as a function of 𝑊∞: large 

species have strong density dependence (𝑅𝑝/𝑅max  ≫ 1) while small species have a more 

linear stock-recruitment curve (𝑅𝑝/𝑅max ≲ 10). In other words: large species have 

approximately constant recruitment while small species have a linearly increasing stock 

recruitment-relationship. This qualitative result is in accordance with the pattern of density-

dependence observed in the Barents Sea (Dingsør et al, 2007) and with cross-species analysis 

across systems (Goodwin et al, 2006). The difference in density dependence between small 

and large species can be used to hypothesize that there are systematic differences in the 

impact of fishing and environmental changes on recruitment. Because recruitment of large 

species is saturated (when they are not heavily fished) they are insusceptible to conditions 

that influence survival at early life. They will however be sensitive to environmental changes 

that influence the carrying capacity of the stock characterized by 𝑅max. In contrast, small 

species are predicted to be on the rising part of the stock-recruitment curve and are 

susceptible to conditions influencing egg survival. Hence, environmental changes can be 

expected to lead to large year-to-year fluctuations in recruitment of small species. Further, 

fishing will impact recruitment directly leading to recruitment overfishing.  

Reference points 

The difference in density dependence between species highlights the importance of 

accounting for recruitment when reference points are estimated – purely relying on 

demographics, i.e. using constant recruitment, does not guarantee a reliable assessment of the 

fishing mortality at maximum sustainable yield. The predicted reference points were 

compared to “observed” reference points used in practical management. The estimation 

procedure for these observed reference points varied between stocks and it should be kept in 
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mind that the estimations in all cases are quite uncertain. Nevertheless, it is clear that the 

observed reference points do not vary with 𝑊∞ as predicted by metabolic scaling rules. 

Metabolic scaling rules are therefore unsuited to parameterize unstructured models, like 

surplus production models and EcoPath (Christensen and Pauly, 1992). The only reference 

point that obeys metabolic scaling rules is 𝐹msyr ∝ 𝑊∞
−1/4

 since it does not rely on 

recruitment. 𝐹msyr is often used as a reference point (e.g. Le Quesne and Jennings, 2012). For 

large species 𝐹msyr may be a reasonable predictor of 𝐹msy if natural mortality is low but for 

small species 𝐹msyr is an unsuitable reference point since it may even be higher than 𝐹crash. 

Assumptions 

How does these two central predictions depend on the assumptions? Assumption 5 states that 

density-dependence is regulated by processes happening early in life, represented by a stock-

recruitment relationship. This has been a standard procedure since Ricker (1954) and 

Beverton and Holt (1959) and is supported by data for some well-studied stocks (Elliott 

1989).  However, this procedure has come under pressure due to the increasing amount of 

evidence of density dependent control by growth (Lorenzen and Enberg, 2002), maturation 

(Persson et al. 1998) or cannibalism (Persson et al 2003). To understand how our results rely 

on assumptions of growth, mortality and density dependent control (assumption 1, 2 and 5) it 

is instructive to consider the Fcrash reference point. When the population is unfished density-

dependent control is at its maximum. As F increases the density dependent regulation of 

growth, recruitment and mortality needed to keep the unfished population in balance is 

gradually replaced by the impact of fishing. Eventually, at 𝐹 = 𝐹crash where the population is 

at the brink of extinction, density dependent regulation is completely absent. Since there is no 

density dependent regulation at 𝐹crash, the shape of 𝐹crash as a function of 𝑊∞ is independent 

on how density dependence operates, i.e. on whether density dependence is due to growth, 

mortality or the stock-recruitment relation. Instead 𝐹crash is determined by the amount of 

density-dependent regulation that is substituted by fishing mortality before the population 

crashes. The amount of density-dependent regulation is measured by the egg production per 

recruit from density-independent processes, which was found to be 𝑅𝑝/𝑅 ∝ 𝑊∞
1−𝑎 ≈ 𝑊∞

0.65. 

If the egg-production per recruit would have been independent of 𝑊∞, the amount of density 

dependent control in the unfished state would be independent of 𝑊∞ and 𝐹crash would follow 

metabolic scaling rules. Since egg-production does depend on 𝑊∞, we conjecture that the two 

conclusions about recruit production and reference points would be the same with other types 

of density dependent control than the (convenient) stock-recruitment relationship. Which 

assumptions, then, determines egg-production per recruit? These are essentially the 

assumptions related to growth and mortality; the “n” exponent in (1) and the “𝑛 − 1” 

exponent and the “a” constant in (2). A recent comprehensive data-analysis of mortality 

(Gislason et al. 2010) suggested that mortality does not follow the metabolic law with 

exponent 𝑛 − 1 but instead scales with 𝑤 and 𝑊∞ as 𝜇 ∝ 𝑤−1/2𝑊∞
1/6

 (Charnov et al. 2012). 

Using this assumption makes egg production per recruit almost independent of asymptotic 

size (Gislason et al 2008) and following the logic rolled out above this implies that 𝐹crash 

approximately obeys the metabolic scaling rule. However, this result is in violation of the 

data from reference points that we have collected, which clearly do not obey the metabolic 

scaling rule. This apparent contradiction may be understood by accepting that mortality and 

growth measured on natural populations are composed of density-independent and density-

dependent contributions. About 60 % of the populations analysed by Gislason et al. (2010) 

were from unfished populations where density-dependent control presumably is strong. 

Therefore, if the Charnov et al. (2012) mortality scaling were to be applied to determine 

fisheries reference points, the density-dependent contribution needs to be explicitly 
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subtracted first. Partitioning of growth and mortality into density-independent and density-

dependent processes is no simple matter, as it requires analysing time-series of abundance, 

growth and mortality in conjunction with a model of density-dependence (Lorenzen and 

Enberg, 2002; Lorenzen 2008). In summary: our specification of growth and mortality 

represent density independent processes and all density-dependence is parameterized into the 

stock-recruitment relationship. We argue that a different representation of density-

dependence would yield qualitatively similar functional relationships between reference 

points and asymptotic size. We call for further empiric examinations of the nature of density-

dependent regulation (sensu Lorenzen and Enberg 2002; Lorenzen, 2008) and theoretic 

examinations of the consequence of different types of density-dependence on reference 

points. 

Applications 

Since the theory only relies on asymptotic size it is convenient for use as a starting point in 

data-poor situations where the asymptotic size can be estimated as the largest fish caught. If a 

size-distribution of the catch is known, the fishing mortality can be estimated which may be 

compared to the reference points calculated from the “default” life-history invariant 

parameters. If additional information from the specific stock is available, e.g. gonado-somatic 

index, mortality, etc., the predictions will improve. The theory therefore provides a 

framework that can be applied for genuine data-poor situations, where only the size-

distribution of the catch is known, as well as for data-rich situations where default life-history 

invariants can be replaced by more accurate stock-specific estimates. A promising way to 

improve the assessment of the life-history parameters is to use the “Robin Hood” approach by 

borrowing information from phylogenetic related data-rich stocks (Smith et al., 2009). In 

addition to being a useful starting point in data-poor situations, the theory can be applied to 

obtain insight into the response of fish stocks to fishing in general. As an example, we used 

the theory to predict how species with small and large asymptotic size are expected to have 

systematic differences in density dependence and therefore systematic differences in their 

fisheries reference points. Other related applications would be to test the impact of different 

types of size-selection, like the “balanced” selection (Garcia et al. 2012; Law et al.., 2012) or 

gill-net selectivity, or to examine the relative importance of young vs. old individuals for 

recruitment to test the “BOFF” hypothesis across life-histories (Morgan 2008). The 

calculations have been performed for a stock in demographic equilibrium, but the theory can 

be applied out of equilibrium by using the time-dependent McKendric-von Foerster equation 

(B1), e.g. to test how fishing influences the stability of population dynamics as a function of 

𝑊∞. The theory can be used for life-history optimization calculations or quantitative genetics 

calculations of fisheries induced evolution (Jørgensen et al. 2007, Andersen and Brander, 

2009). Further, the single-species model provides the basis for multi-species models where 

mortality and growth are calculated dynamically based on the abundance of predators and 

available food (Andersen and Ursin, 1977; Andersen and Beyer, 2006). This approach can be 

realized either in trait-based models (Pope, et al., 2006; Andersen and Pedersen, 2010) or in 

species-based models (Hall et al., 2006). Finally the theory can be applied in a practical 

fisheries management context for determining fisheries reference points, as a basis for 

statistical stock-assessment models, or for making impact assessment of fisheries 

management measures, e.g. rebuilding and recovery plans or changes in gear size regulations. 

Such management applications may cover any data situation from the poorest to situations 

where life-history parameters are well known.  
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Appendix A. Fitting growth parameters to obtain 𝐴 

The growth function (6) contains two species-independent constants that must be determined: 

the exponent for the consumption 𝑛 and the growth constant 𝐴. Growth in fishes is usually 

described by a von Bertalanffy growth equation based on measurements of length and age. 

The von Bertalanffy equation corresponds to (6) provided that 𝑛 = 2/3, 𝜓𝑚 = 1 and an 

isometric relation between weight and length 𝑙: 𝑤 ∝ 𝑙3. In that case length-at-age 𝑡 is: 

𝑙(𝑡) = 𝐿∞(1 − 𝑒−𝐾𝑡). We have collected values of von Bertalanffy growth constants 𝐾 and 

𝐿∞ for species with asymptotic lengths between 3 and 400 cm, and corrected them to a 

common temperature of 10∘C using a Q10 of 1.83 as described by Kooijman (2000), where 

Q10 describes the relative change of 𝐾 when the temperature is changed 10∘C (Fig. 2b).  

The growth curve generated by (6) is not a von Bertalanffy growth curve because of the 

switch in allocation of energy around the size of maturation. However the growth curve 

generated by (6) (for given values of 𝐴 and 𝑛) can be fitted quite well with a standard von 

Bertalanffy growth curve to determine the two constant 𝐾𝑓𝑖𝑡 and 𝐿∞𝑓𝑖𝑡. We have done this by 

calculating length-at-age from numerical solutions of (6) at ten ages between age 1 and the 

age where individuals reach 95 % of the asymptotic length (the results are not sensitive to the 

choice of these two ages) (Fig. A1). We have then used a least-squares optimization to find 

the value of 𝐴 that minimizes the difference between the observed 𝐾𝑜𝑏𝑠.𝑖 and fitted 𝐾𝑓𝑖𝑡.𝑖 

values of 𝐾 for the 𝑖th observation as: min
𝐴

{∑ (𝑖 log ( 𝐾𝑜𝑏𝑠.𝑖) − log ( 𝐾𝑓𝑖𝑡.𝑖))2}. Using a value 

of 𝑛 = 2/3 gave a value of 𝐴 = 5.2 𝑔0.25yr−1 with 𝑟2 = 0.47. Using 𝑛 = 3/4 gave a better 

fit: 𝑟2 = 0.58 and 𝐴 = 4.47 g0.25yr−1. The best fit was with 𝑛 = 0.81 leading to = 4.46 

g0.25yr−1, 𝑟2 = 0.63. We have used 𝑛 = 3/4 as it conforms best with metabolic theory. The 

fitted values of 𝐾 lie on a straight line in a log-log plot as a function of 𝐿∞ (Fig. 2b). Using 

𝑛 = 3/4 gave a relation between the von Bertalanffy parameters which was 𝐾 ∝ 𝐿∞
−0.78.  

In summary: if an exponent 𝑛 = 3/4 is used for the growth function the relation between the 

𝐾 and 𝐿∞ is approximately 𝐾 ∝ 𝐿∞
−0.78, in good agreement with other investigations (Shin 

and Cury, 2004 Appendix B). Since 𝐾 varies systematically with asymptotic size it is not an 

appropriate measure of growth rate, because it becomes difficult to ascertain directly whether 

the species grows fast or slow without first compensating for the variation with asymptotic 

size. We therefore encourage 𝐴 as a measure of growth rate instead of 𝐾, which is commonly 

used.  

The value of 𝑛 does not matter for the qualitative results of the theory but it will impact the 

exact results of e.g. reference points. Using 𝑛 = 2/3 is the obvious choice as it conforms to 

the classic use of the von Bertalanffy growth equation in fisheries science (it is also used in 

our previous works: Andersen et al. 2009; Andersen and Brander, 2009), while 𝑛 = 3/4 

would conform to modern metabolic theory (West et al., 2001). Metabolic theory bases the 

scaling of the growth rate on the scaling of standard metabolism, which is known to be high 

for fish, around 0.86 (Winberg, 1956). However, metabolic theory does not account for how 

activity metabolism scales with size, and an empirical assessment of 𝑛 based on standard 

metabolism is not sufficient (Moses et al., 2008). Our fitting of growth curves demonstrated 

that 𝑛 = 3/4 actually gave a better fit to the dataset on growth parameters than 𝑛 = 2/3. To 

finally settle the matter on the value of 𝑛 requires a data-analysis that is based on the raw 

length-at-age data in the full size range and not just the von Bertalanffy growth parameters. 

We therefore call for a cross-species estimation of 𝑛 based on raw size-at-age data.  

Appendix B. Determining the size-spectrum from growth and mortality 

Knowing the growth rate (6) and mortality (2) the size spectrum can be determined as a 
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solution to the McKendric-von Foerster equation:  

 
𝜕𝑁(𝑤)

𝜕𝑡
+

𝜕𝑔(𝑤)𝑁(𝑤)

𝜕𝑤
= −𝜇(𝑤)𝑁(𝑤), (B1) 

where 𝜇(𝑤) is the total mortality. This equation is equivalent to a standard life-table 

approach just written in continuous time for a size-structured population. In steady state 

𝜕𝑁/𝜕𝑡 = 0 and (B1) can be written as: 

 

𝜕𝑔(𝑤)𝑁(𝑤)

𝜕𝑤
= −

𝜇(𝑤)

𝑔(𝑤)
𝑔(𝑤)𝑁(𝑤), 

 

(B2) 

which emphasizes the central role of the ratio between mortality and growth reflected in the 𝑎 

parameter in (2), which is the ratio between mortality and specific available energy. The 

concept of a “flux” is central in size-based theory. A flux is the biomass or number of 

individuals passing through a given size per time. For example, the flux of number of 

individuals through the size 𝑤 is 𝑔(𝑤)𝑁(𝑤) (numbers per time), which is equivalent to 

number-at-size in classic size-discrete theory (Beyer 1989). Dividing by this flux on both 

sizes of eq. (B2) yields: 

d ln[𝑔(𝑤)𝑁(𝑤)]

d𝑤
= −

𝜇(𝑤)

𝑔(𝑤)
 

 with the solution: 

 
𝑁(𝑤)

𝑅
=

1

𝑔(𝑤)
exp (− ∫

𝜇(�̃�)

𝑔(�̃�)

𝑤

𝑤𝑟

d�̃�) =
1

𝑔(𝑤)
𝑃𝑤𝑟→𝑤  (B3) 

where 𝑅 is the flux of recruits (numbers per time) at the size 𝑤𝑟: 

𝑅 = 𝑔(𝑤𝑟)𝑁(𝑤𝑟) 

Mathematically 𝑅 acts as a boundary condition for (B1) at 𝑤𝑟. The exponential term in (B3) 

is the survivorship 𝑃𝑤𝑟→𝑤 which in general must be solved numerically (Appendix C). It can 

be solved analytically for the case of von Bertalanffy growth (𝜓𝑚(𝑤/𝑊∞) = 1) and size-

independent (or none) fishing (Beyer 1989, Andersen et al. 2008). Such analytical solutions 

are useful for checking the accuracy of numeric calculations and for understanding the results 

of the theory.  To demonstrate this we make an analytical calculation of the stock structure in 

Fig. 1c+d below. For juvenile fish (𝜓𝑚(𝑤/𝑊∞) = 0) the exponential term in (B3) becomes 

 𝑃𝑤1→𝑤2
= (

𝑤2

𝑤1
)

−𝑎

[
1 − 𝜖𝑎 (

𝑤2

𝑊∞
)

1−𝑛

1 − 𝜖𝑎 (
𝑤1

𝑊∞
)

1−𝑛]

𝑎+𝑎F/𝜖𝑎
1−𝑛

   , 𝑤2 <  𝑤𝑚   
(B4) 

Thus when growth is governed by 𝑔(𝑤) =  𝐴𝑤𝑛[1 − 𝜖𝑎(w/W∞)1−𝑛] and mortality by the 

physiological mortalities 𝑎 and 𝑎F the number flux 𝑅2 = 𝑁(𝑤2)𝑔(𝑤2) at size 𝑤2 equals the 

number flux or recruitment at size 𝑤1: 𝑅1 = 𝑁(𝑤1)𝑔(𝑤1) multiplied by 𝑃𝑤1→𝑤2
. Note that 

the approximate survivorship (9) is recovered from (B4) when 𝑤1 ≪ 𝑊∞ and 𝑤2 ≪ 𝑊∞ 

which makes the term in the square bracket become ≈ 1.      

 

Fig. 1c+d depicts the biomass density on a logarithmic size scale, i.e. the biomass 𝑤2𝑁(𝑤). 

Mathematically this is because the biomass in a small size interval 



Andersen and Beyer - Size structure determines reference points     20 

 

w𝑁(𝑤)d𝑤 is proportional to 𝑤2𝑁(𝑤)d log𝑤. Starting with a biomass 𝑤1
2𝑁(𝑤1) at 𝑤1we 

want to calculate the biomass  𝑤2
2𝑁(𝑤2) at 𝑤2. This is obtained directly from 𝑅2 = 

𝑅1𝑃𝑤1→𝑤2
. Dividing by growth rate and multiplying by weight squared yields 

𝑤2
2𝑁(𝑤2) =    (

𝑤2

𝑤1
)

2−𝑛−𝑎

[
1 − 𝜖𝑎 (

𝑤2

𝑊∞
)

1−𝑛

1 − 𝜖𝑎 (
𝑤1

𝑊∞
)

1−𝑛]

𝑎+𝑎𝐹/𝜖𝑎
1−𝑛

−1

𝑤1
2𝑁(𝑤1) 

where the first factor represents a biomass spectrum which explains why the biomass in Fig. 

1c starts by increasing almost linearly with slope 2-n-a = 0.90. In Fig. 1 the start biomass at 

𝑤1 = 0.01𝑊∞ is set to 1. At the start of fishing 𝑤𝐹 = 0.05𝑊∞ the biomass has inceased by a 

factor of 50.90 = 4.257 which is reduced by 7% to 3.955 by the square-bracket factor with 

𝑎F=0. Considering now 𝑤1 = 0.05𝑊∞ the biomass at 𝑤2 = 0.25𝑊∞ will again increase by a 

factor of 50.90 = 4.257 which is reduced by 13% to 3.688 by the square-bracket factor with 

𝑎F=0. Thus, at the size of maturation 𝑤𝑚 = 0.25𝑊∞ (vertical dotted line in Fig. 1), the 

biomass has increased by a factor of 3.955⋅ 3.688 = 14.6 in the absence of fishing. However, 

if fishing occurs with 𝑎F=0.5 then this unfished biomass at 𝑤𝑚 is reduced by the bracket to 

the power of 𝑎F/((1-n) 𝜖𝑎) = 2.5 or by a factor of 0.408. Thus the biomass at 𝑤𝑚 (vertical 

dotted line in Fig. 1d) increases to only 14.6⋅ 0.408 = 5.95 when fishing takes place at 

𝑎F=0.5. Alternatively, expressing fishing by F, the fishing exponent of the square-bracket 

becomes 𝑊∞
1−𝑛F/(A(1-n) 𝜖𝑎) = 0.8333𝑊∞

0.25 for F=0.75 per year. For example, 𝑊∞= 10 kg 

produces a power of 8.333 thereby reducing the biomass to 5% of the unfished biomass at 

𝑤𝑚 (14.6⋅ 0.050 = 0.74 cf. vertical dotted line crossing thick dashed line in Fig. 1c). 

 

Similarly calculations for mature fish can take place based on the von Bertalanffy growth 

equation which produces the biomass equation above with 𝜖𝑎 replaced by 1 since the cost of 

reproduction also must be incorporated.  Such analytical results will deviate slightly from 

correct numerical calculations because we are not considering smooth gear selection and 

maturity ogives. 

 

Recruitment 

The flux of eggs, 𝑅𝑝 (numbers/time), is traditionally written as being proportional to the 

spawning stock biomass 𝑅𝑝 = 𝛼𝐵. The spawning stock biomass 𝐵 is the integral of the 

biomass density 𝑁(𝑤)𝑤 over the mature individuals. Dividing by the flux of recruits to 

size 𝑤𝑟 , 𝑅 (numbers/time), yields the spawning stock biomass per recruit (time⋅weight):  

 
𝐵

𝑅
= ∫ 𝜓𝑚

𝑊∞

𝑤𝑟

(𝑤/𝑊∞)
𝑁(𝑤)

𝑅
 𝑤 d𝑤 (B5) 

The egg production 𝑅𝑝 is found by multiplying the spawning stock biomass by α (eq. 11 in 

main text): 

 
𝑅𝑝

𝑅
= 𝛼

𝐵

𝑅
 = 𝜖𝑟(1 − 𝜖𝑎)𝐴𝑊∞

𝑛−1/𝑤𝑒𝑔𝑔

𝐵

𝑅
 (B6) 

Combining (B6) with the Beverton-Holt recruitment relationship (10) and rearranging gives 

the recruitment:  

 
𝑅

𝑅𝑚𝑎𝑥
= 1 −

𝑅

𝑃𝑤𝑒𝑔𝑔→𝑤𝑟
𝑅𝑝

= 1 −
𝑊∞

1−𝑛𝑤𝑒𝑔𝑔

𝜖𝑟(1 − 𝜖𝑎)𝐴𝑃𝑤𝑒𝑔𝑔→𝑤𝑟
𝐵/𝑅

 (B7) 



Andersen and Beyer - Size structure determines reference points     21 

 

where 𝐵/𝑅 is found from (B5) using (B3) and the survivorship 𝑃𝑤𝑒𝑔𝑔→𝑤𝑟
≈ (𝑤𝑟/𝑤𝑒𝑔𝑔)

−𝑎
 

becomes one since we here are considering recruitment 𝑅 in numbers of eggs so 𝑤𝑟 = 𝑤𝑒𝑔𝑔. 

Appendix C. Numerical solution procedure  

Finding the size spectrum and the yield is a matter of solving equations (B3), (B5), (B7), and 

(12). The integrals involved in the expressions can be approximated by sums that are readily 

implemented in a spreadsheet. The procedure to determine the yield is a follows:  

1. First construct a series of 𝑚 weight classes 𝑤𝑖 logarithmically distributed between 𝑤𝑟 

and 𝑊∞: 𝑤𝑖 = exp [ ln ( 𝑤𝑟) + (𝑖 − 1)Δ] where Δ = (ln 𝑊∞ − ln 𝑤𝑟)/(𝑚 − 1). For 

the numerical calculations presented in the paper we used 𝑚 = 1000. 

2. Define the physiological mortality at each grid point as the mortality divided by 

specific growth: 

𝑎𝑖 =
𝜇𝑝(𝑤𝑖) + 𝜇𝐹(𝑤𝑖)

𝑔(𝑤𝑖)
𝑤𝑖 

where 𝜇𝑝(𝑤𝑖) and 𝑔(𝑤𝑖) are given by (2) and (6). Note that here the fishing mortality 

is written as 𝜇𝐹(𝑤) since it may vary differently with size than the particular form of 

trawl selectivity used in the main text.  

3. Approximate 𝑁/𝑅 from (B3) as a discrete cumulative sum:  

 
𝑁𝑖

𝑅
≈

1

𝑔(𝑤𝑖)
exp (– ∑

𝑎𝑗−1

𝑤𝑗−1
𝛿𝑗

𝑖

𝑗=2

)  for 𝑖 ≥ 2  (C1a) 

where 𝛿𝑗 = 𝑤𝑗 − 𝑤𝑗−1. For the first grid point 𝑁1/𝑅 = 1/𝑔(𝑤1) and for the last 

𝑁𝑚 = 0. The approximation (C1a) is the direct numerical approximation of the 

integral in (B3) by a sum. An alternative, and more accurate, approximation is to 

write 𝑁𝑖 = 𝑁𝑖−1𝑃𝑤𝑖−1→𝑤𝑖
𝑔(𝑤𝑖−1)/𝑔(𝑤𝑖). The survivorship 𝑃𝑤𝑖−1→𝑤𝑖

 can be 

approximated by (9) to give: 

𝑁𝑖

𝑅
≈

1

𝑔(𝑤𝑖)
∏ (

𝑤𝑗

𝑤𝑗−1
)

−𝑎𝑗−1

=

𝑖

𝑗=2

1

𝑔(𝑤𝑖)
exp [−𝛥 ∑ 𝑎𝑗−1

𝑖

𝑗=2

]    for 𝑖 ≥ 2 

 
 

 
(C1b) 

Also in this case the first grid point is 𝑁1/𝑅 = 1/𝑔(𝑤1). This approximation makes it 

possible to reduce the number of weight classes.  

4. Approximate the spawning stock biomass per recruit as 𝐵/𝑅 from (B5): 

 
𝐵

𝑅
≈ ∑ 𝜓𝑚

𝑚−1

𝑖=1

(𝑤𝑖)
𝑁𝑖

𝑅
𝑤𝑖𝛿𝑖+1 (C2) 

      5. Calculate the relative recruitment 𝑅/𝑅𝑚𝑎𝑥 from (B7): 

 
𝑅

𝑅𝑚𝑎𝑥
= 1 −

𝑊∞
1−𝑛𝑤𝑒𝑔𝑔

𝜖𝑟(1 − 𝜖𝑎)𝐴

1

𝑃𝑤𝑒𝑔𝑔→𝑤𝑟

 
𝑅

𝐵
 (C3) 

where the survivorship 𝑃𝑤𝑒𝑔𝑔→𝑤𝑟
= 1 if 𝑤𝑟 = 𝑤𝑒𝑔𝑔. If not, the approximate formula 

(9) for the survivorship should be sufficient, or the full formula (B4) can be applied. If 
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𝑅/𝑅max < 0 the population is crashed. 

6. Approximate the yield from (12) (here scaled with the maximum biomass flux of 

recruits): 

 
𝑌

𝑅𝑚𝑎𝑥𝑤𝑟
≈ 𝐹

𝑅

𝑅𝑚𝑎𝑥𝑤𝑟
∑ 𝜓𝐹

𝑚−1

𝑖=1

(𝑤𝑖)
𝑁𝑖

𝑅
𝑤𝑖𝛿𝑖+1. (C4) 

7. Yield per recruit can be calculated from (C4) by multiplying with 𝑅max/𝑅F and with 

𝑤𝑟/𝑤𝐹 where: 
𝑅F

𝑅max
=

𝑁(𝑤𝐹)𝑔(𝑤𝐹)

𝑅max
=

𝑁(𝑤𝐹)

𝑅

𝑅

𝑅max
𝑔(𝑤𝐹) 

with 𝑁(𝑤𝐹)/𝑅 and 𝑅/𝑅max calculated from (C1) and (C3) without fishing mortality, 

alternatively by using a size of recruitment to the fishery where 𝜓𝐹(𝑤𝐹) = 0.   

 

Appendix D. Steepness parameter 

The Beverton-Holt stock-recruitment function is frequently characterized by the “steepness” 

parameter ℎ. The steepness parameter is defined as the proportion of recruitment, relative to 

the recruitment at the equilibrium with no fishing, when the spawner abundance or biomass is 

reduced to 20% of the un-fished level. The steepness can be calculated as: 

ℎ =
1 + 𝑅𝑝/𝑅𝑚𝑎𝑥

5 + 𝑅𝑝/𝑅𝑚𝑎𝑥
 

It is a monotonous function of asymptotic size with larger species having a higher steepness 

than smaller species (Fig. D1). 

Appendix E. Web-based implementation 

The model has been implemented as an interactive web-based application written in java-

script. The application solves the full dynamic version of the model (B1) using finite-

difference methods (Hartvig et al. 2011, App. G). It also demonstrates how a variation of the 

recruitment over the season can be implemented and the impact on the size-distribution of 

species of different asymptotic sizes. The application can be accessed at 

http://www.stockassessment.org/spectrum/  



Andersen and Beyer - Size structure determines reference points     23 

 

Table 1. Parameters and symbols used in the model and their relation to von Bertalanffy 

parameters 𝑲 and 𝑳∞, adult mortality 𝑴, and individual length 𝒍. 𝒒 = 𝟎. 𝟎𝟏 g cm-3 is the 

constant of proportionality between length3 and weight.  

Symbol  Parameter or symbol  Value$$ (range*) Relation to “classic” 

parameters   

𝐴  Growth constant (eq. 1)¶  4.5 g1−𝑛yr−1 (𝜎 = 0.5)  𝐴 = 3 𝑞1−𝑛𝐾𝐿∞
3(1−𝑛)

   

𝑛  Exponent for consumption (eq. 1,2)¶  3/4  

𝑎  Physiological mortality (eq. 2)§  0.35 (c.v. = 0.5) 𝑎 ≈ 𝑀/(3𝐾)𝜂𝑚
1−𝑛   

𝑊∞  Asymptotic size (weight) (eq. 5a) Stock specific  𝑊∞ = 𝑞𝐿∞
3    

𝑢𝑚, 𝑢𝐹  Width of switching functions (eq. 3) 10    

𝜖𝑎  Fraction of energy for activity$ (eq. 5b) 0.8    

𝜂𝑚  Size at maturation rel. to 𝑊∞ (eq. 3)** 0.25 (c.v. = 0.3) 𝜂𝑚 = (𝐿m/𝐿∞)3  

𝜖𝑟  Recruitment efficiency (eq. 11)†  0.1 (𝜎 = 0.5)    

𝑤egg  Weight of an egg (eq. 11) 1 mg  

𝜂𝐹  Start of fishing rel. to 𝑊∞  0.05 (𝜎 = 0.5)     

𝑤 Individual weight (eq. 1) weight 𝑤 = 𝑞𝑙3  

𝜇𝑝(𝑤) Predation mortality (eq. 2) 1/time  

𝑘𝑎 and 𝑘𝑟 Specific investment into activity and 

reproduction  
1/time 

 

g(w) Growth rate (eq. 6) weight/time  

𝑁(𝑤) Abundance spectrum (eq. 7) numbers/weight  

𝑃𝑤1→𝑤2
 Survivorship from 𝑤1 to 𝑤2 (eq. 9, B4) -  

𝐵 Spawning stock biomass (eq. B5) biomass  

𝛼 Recruitment parameter (eq. 11) numbers biomass-1time-1  

𝑤𝑟 Weight at recruitment (eq. B5) weight (= 𝑤egg)  

𝑅𝑝 Egg production (physiological  

recruitment) (eq. 10, B6) 

numbers/time  

𝑅 Recruitment (eq. 10, B7) numbers/time  

𝑅𝑚𝑎𝑥 Maximum recruitment (eq. 10) numbers/time  

𝑌, 𝑌𝑟 Yield and yield per recruit (eq. 12) biomass/time and -  

𝐹 Fishing mortality time-1
  

𝑎𝐹  Physiological fishing mortality  (eq. 13) - 𝑎𝐹 ≈ 𝐹/(3𝐾)   

* Ranges specified by 𝜎 are normal distributed on log-transformed variables. Ranges specified by c.v. are normal distributed with c.v. 

being the coefficient of variation, and constrained to be positive. 

$$Note that we distinguish between dimensions of weight, which refer to individual weight, and biomass, which equals numbers⋅weight. 

§The value of 𝑎 is determined from its relation to the 𝑀/𝐾 life history invariant (Andersen et al, 2009). The value of 𝑎 used in 
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Andersen et al. (2009) was 𝑎 = 0.2, but here the value has been increased to comply better with the recent dataanalysis of natural 

mortality on fish by Gislason et al (2010).  

$Fitted to data by Gunderson (1997), see Fig. 2a. 

¶See Appendix A. Notice that 𝐴 is represented by ℏ in some of our earlier works. 

**Beverton (1992).  

†See (Hartvig et al, 2011, Appendix E).  
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Table 2. Reference points and physiological parameters for the stocks used in Fig. 8. 

  

Species  𝑊∞ (kg)  𝐾 (yr−1) 𝐹lim (yr−1)  𝐹msy (yr−1)   

North Sea        

Cod 𝑎  23  0.16  0.86  0.19  

Herring 𝑎  0.42  0.35  -  0.25   

Haddock 𝑎  2.7  0.1  1.0  0.3  

Plaice 𝑎  1.25  0.15  0.74  0.25  

Saithe  30  0.05  0.6  0.3   

Sole 𝑎  1.1  0.35  -  0.22  

Baltic Sea, ICES area 25   

Cod 𝑏  22  0.15  0.96  0.3   

Herring 𝑐  0.1  0.53  -  0.16   

Sprat d 0.015  0.55  -  0.35   

Irish Sea   

Cod 𝑎  18  0.22  1  0.4  

Sole 𝑎  0.85  0.26  0.4  0.16   

Barents Sea   

Cod 𝑎  22  0.1  0.74  -   

Haddock 𝑎  9  -  0.77  0.35   

Saithe a 9  -  0.58  -   

Bay of Biscay   

Sole  -  -  0.58  0.26   

Anglerfish 𝑎  11  0.18  -  0.28   

All reference points are from the 2011 reports of stock assessments conducted within ICES. 

Growth estimates are from: a: Denney et al. (2002); b: Bagge et al. (1994); c: Beyer and 

Lassen (1994); d: Kaljuste (1999). 
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Figure 1. Growth (a), mortality (b), and stock 

structure (c+d) of a fish population as a function 

of size divided by asymptotic size. a) Available 

energy (solid line) of a fish with asymptotic size 

300 g is used for activity (light grey), 

reproduction (medium grey) and somatic growth 

(dark grey). The boundary of the black patch 

illustrates the maturity ogive 𝜓𝑚(𝑤) (not to 

scale) that switches between zero and 1 around 

the size of 50% maturation (vertical dotted line). 

Growth rate (dashed) increases with size until 

the size at maturation after which it declines as 

energy is invested in reproduction. b) Natural 

mortality is a decreasing function of size (solid 

line). Fishing mortality is modeled as a trawl 

selectivity increasing smoothly around 𝑤 =
0.05𝑊∞ (dashed line). c+d) Stock structure 

shown as biomass spectra 𝑤2𝑁(𝑤) for species 

with 𝑊∞ = 10 g, 300 g and 10 kg (thin, 

medium, and thick lines) for unfished (solid 

lines) and fished situations (dashed lines). The 

soft kink in the spectra around the size at 

maturation is due to the decline in growth rate 

around the size of maturation. In panel (c) 

fishing mortality is constant for all asymptotic 

size groups at 𝐹 = 0.75 yr-1 while in panel (d) 

fishing mortality is scaled with metabolism as a 

physiological fishing mortality 𝑎𝐹 = 0.5 

corresponding to 𝐹 ≈ 1.3, 0.54 and 0.23 yr-1 for 

the three species. In that case the fished spectra 

for all three species are identical and therefore 

lie on top of one another. The spectra are scaled 

such that they coincide at 𝑤 = 0.01𝑊∞.  
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Figure 2. a) Yearly weight-specific allocation to egg production as a function of asymptotic 

size (black circles; data from Gunderson, 1997), compared to the maximum possible 

allocation per weight to reproduction 𝑘𝑎 + 𝑘𝑟 (solid line), and the actual allocation 𝑘𝑟 ∝

𝑊∞
−1/4

 (dashed line). b) von Bertalanffy growth constant 𝐾 as a function of asymptotic 

length, corrected from raw data points (open circles) to a temperature of 10∘C (grey points). 

Fits to a standard von Bertalanffy growth function using 𝑛 = 2/3 (dashed line; 𝑟2 = 0.47), 

and to (4) using 𝑛 = 3/4 (solid line; 𝐾 ∝ 𝐿∞
−0.78; 𝑟2 = 0.58). For details of the fitting 

procedure, see Appendix A. Data points are from Gislason et al. (2010) and Kooijman 

(2000). 

 

Figure 3. Yield per recruit to the fishery as a function of fishing mortality measured in 

absolute units (a) and physiological units (b) for species with 𝑾∞ = 10, 300 g and 10 kg 

(thin, medium and thick lines). Dashed lines on (b) are for high and low natural mortality 

(𝒂 = 𝟎. 𝟒𝟓 and 0.25). Note that all yield per recruit curves from panel (a) coincide in panel 

(b). 
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Figure 4. Recruitment for species with 𝑾∞ = 10 g, 300 g and 10 kg (thin, medium and thick 

lines and symbols) for an un-fished situation (black symbols) and fished with 𝑭 = 𝟎. 𝟕𝟓 yr-1 

(grey symbols). a) Beverton-Holt recruitment curves as function of spawning stock biomass 

𝑩/𝑹𝐦𝐚𝐱.. Note that the spawning stock biomasses for the two largest species in the un-fished 

situation are so large that they are outside the panel (𝑩/𝑹𝒎𝒂𝒙 = 𝟏. 𝟗 and 43 g⋅ yr for 𝑾∞ = 

300 g and 10 kg). The thin dotted lines represent the initial slopes 𝜶 of the recruitment 

curves. b) Beverton-Holt recruitment curves as a function of egg production (physiological 

recruitment) 𝑹𝒑 on a logarithmic axis.  

 

Figure 5. Recruitment as a function of fishing mortality in absolute units (a) and 

physiological units (b) for species with 𝑊∞ = 10 g, 300 g and 10 kg (thin, medium and thick 

lines and symbols). The grey symbols correspond to a fishing mortality of 𝐹 = 0.75 yr-1. 
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Figure 6. Yield as a function of fishing mortality for species with 𝑾∞ = 10 g, 300 g and 10 

kg (thin, medium and thick black lines), and yield per recruit (grey lines), as a function of 

fishing mortality measured in absolute units (a) and physiological units (b). Both yield and 

yield per recruit are scaled by the maximum yield or yield per recruit. The three yield per 

recruit curves in panel (b) coincide just as in Fig. 3b. 

 

Figure 7.  Fisheries reference points as a function of fishing mortality measured in absolute 

units (a) and physiological units (b). Reference points: 𝑭𝐦𝐬𝐲 (fishing mortality at maximum 

yield; solid grey), 𝑭𝐦𝐬𝐲𝐫 (fishing mortality at maximum yield per recruit; dashed grey), 

𝑭𝐜𝐫𝐚𝐬𝐡 (fishing mortality where the population goes extinct; solid black), 𝑭𝐥𝐢𝐦 (fishing 

mortality at 50% reduced recruitment; dashed black). The grey area is where the stock has 

crashed.  
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Figure 8. Fisheries reference points 𝐹msy (a) and 𝐹lim (b) as functions of asymptotic size. 

Filled circles are currently used reference points from selected ICES stocks (Table 2). The 

grey areas represent results from calculations of the references points using parameters drawn 

at random from the distributions specified in Table 1. Light grey shows the 90 % fractile of 

the results, dark grey shows the 75 % fractile domain 

 

Figure 9. Fisheries reference points as a function of the physiological rate of natural mortality 

a for a species with 𝑊∞ = 10 g (a) and 10 kg (b). Reference points: 𝐹msy (solid grey), 

𝐹msyr (dashed grey), 𝐹crash (solid black), 𝐹lim (dashed black). The vertical dashed line is the 

value of 𝑎 used to construct e.g. Fig. 7 and 8. The grey area is where the stock has crashed.  
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Figure A1. Example of the fit of a von Bertalanffy growth curve (solid line) to the growth 

curve described by Eq. (4) (dotted line) using 10 data points (circles). The example is for a 

species with asymptotic length 𝐿∞ = 100 cm. The horizontal dotted line is at the length of 50 

% maturation. 

 

Figure D1. Steepness as a function of asymptotic size. 
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